The role of human lungs in the biotransformation of propofol.
نویسندگان
چکیده
BACKGROUND The metabolism of propofol is very rapid, and its transformation takes place mainly in the liver. There are reports indicating extrahepatic metabolism of the drug, and the alimentary canal, kidneys, and lungs are mentioned as the most probable places where the process occurs. The aim of this study was to determine whether the human lungs really take part in the process of propofol biotransformation. METHODS Blood samples were taken from 55 patients of American Society of Anesthesiologists grade 1-3 scheduled for elective intracranial procedures (n = 47) or for pulmonectomy (n = 8). All patients were premedicated with diazepam (10 mg) administered orally 2 h before anesthesia. Propofol total intravenous anesthesia was performed at the following infusion rates: 12 mg. kg-1. h-1, 9 mg. kg-1. h-1, and 6 mg. kg-1. h-1. Fentanyl and pancuronium bromide were also administered intermittently. After tracheal intubation, the lungs were ventilated to normocapnia with an oxygen-air mixture (fraction of inspired oxygen = 0.33). Blood samples for propofol and 2,6-diisopropyl-1, 4-quinol analysis were taken simultaneously from the right atrium and the radial artery, or the pulmonary artery and the radial artery. The concentration of both substances were measured with high-performance liquid chromatography and gas chromatography-mass spectroscopy. RESULTS The concentration of propofol in the central venous system (right atrium or pulmonary artery) is greater than in the radial artery, whereas the opposite is observed for propofol's metabolite, 2,6-diisopropyl-1,4-quinol. Higher propofol concentrations are found in blood taken from the pulmonary artery than in the blood collected from the radial artery. CONCLUSIONS Human lungs take part in the elimination of propofol by transforming the drug into 2,6-diisopropyl-1,4-quinol.
منابع مشابه
Rat cytochrome P450 2C11 in liver microsomes involved in oxidation of anesthetic agent propofol and deactivated by prior treatment with propofol.
Propofol (2,6-diisopropylphenol) is a widely-used anesthetic agent attributable to its rapid biotransformation. Liver microsomal cytochrome P450 (P450) isoforms involved in the biotransformation of propofol in rats and the effects of propofol in vivo on P450 levels in rats were investigated. Of six cDNA-expressed rat P450 isoforms tested, CYP2B1 and CYP2C11 had high catalytic activities from 5 ...
متن کاملModulating Role of Panax Ginseng in Phase - II Reaction of Hepato - Biotransformation in Albino Rats Following Mercuric Chloride Intoxication
Introduction: The fate of xenobiotics that is present, increasing day by day. The increasing fates altered or inhibit the metabolic activities like detoxification and biotransformation. Methods: The present study highlights this slow biotransformation and detoxification on the basis of specific enzymes which have a say in assessment of mercuric chloride toxicity and modulation by Panax ginse...
متن کاملInterspecies variation in the hepatic biotransformation of zearalenone: Evidence for bio-inactivation of mycoestrogen zearalenone in sturgeon fish
Zearalenone (ZEA) as mycoestrogen is found in human foods and animal feeds. Its estrogenic potency depends on its biotransformation fate. The hepatic biotransformation of ZEA in two species of sturgeon fish (Acipenser persicus and Huso huso) was investigated. ZEA was incubated with the hepatic microsomal and post-mitochondrial sub-fractions in the presence of NADPH and the metabolites were dete...
متن کاملInterspecies variation in the hepatic biotransformation of zearalenone: Evidence for bio-inactivation of mycoestrogen zearalenone in sturgeon fish
Zearalenone (ZEA) as mycoestrogen is found in human foods and animal feeds. Its estrogenic potency depends on its biotransformation fate. The hepatic biotransformation of ZEA in two species of sturgeon fish (Acipenser persicus and Huso huso) was investigated. ZEA was incubated with the hepatic microsomal and post-mitochondrial sub-fractions in the presence of NADPH and the metabolites were dete...
متن کاملThe protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesiology
دوره 93 4 شماره
صفحات -
تاریخ انتشار 2000